Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo partenaire

Home page

Nematodes

Vignette_Nematode

Plant-parasitic nematodes are major economic pests worldwide. Among them, the endoparasitic sedentary phytonematodes of genera Heterodera or Globodera (known as cyst nematodes, CN) and Meloidogyne (the root-knot nematodes, RKN) cause the most important crop losses. CN and RKN larvae (or juveniles) are soil dwelling worms who need to complete their life cycle on plant roots.

These biotrophic parasites interact with their hosts in a remarkable manner. They infect and colonize plant root systems using a sophisticated stylet structure, a hollow retractable needle connected to the esophagus and three unicellular esophageal glands (Fig1). This structure is used to pierce and penetrate plant cell walls, to release esophageal secretions, into the host tissue (in the inter-cellular space but also directly in the plant cells) and to take up nutrients from the plant cells. Remarkably, they induce the redifferentiation of roots cells into specialized hypertrophied and multinucleate feeding cells essential for nematode growth and reproduction. Depending on the nematode species, the initial feeding cell develops into either a syncytium (for CN) or a system of giant cells (for RKN). Syncytia result from cell fusions after cell wall dissolutions between the initial cell on which the nematode starts feeding and an increasing number of neighboring cells. Up to 200 cells can be incorporated in a large syncytium. Conversely, giant cell formation is the result of repeated nuclear divisions of the initial feeding cell without complete cytokinesis (Fig 1). Concomitantly to giant cell ontogenesis, hyperplasia and hypertrophy of the surrounding cells lead to the formation of the typical root gall, the primary visible symptom of infection (Fig1). These feeding cells function as specialized sinks, supplying nutrients to the nematode until reproduction.

Plant-RKN interaction

 

Figure 1. Plant-RKN interaction.

a. Gall symptom on tomato root; b. Proteins secreted via the stylet by second stage juveniles visualized with Coomassie staining; c. Arabidopsis hypertrophied giant cells induced by M. incognita

It is not yet understood how feeding cells are induced, but the effector proteins secreted by the nematode play key roles during invasion and migration and have effects on recipient host cells. Secretions containing these proteins could potentially originate from different organs, but most work has focused on stylet secretions coming from oesophageal glands. A set of genes encoding secreted enzymes, in particular pectocellulolytic enzymes, has been first identified in the salivary secretions of these nematode. Differential gene expression and cDNA library analysis on oesophageal glands have been used to identify potential parasitism genes (Huang et al., 2003) and direct analysis of M. incognita secretions via a proteomic approach has allowed the identification of nearly 500 secreted proteins (Bellafiore et al., 2008). Knowledge of M. hapla and Meloidogyne incognita genome sequences (Abad et al., 2008; Opperman et al., 2008) provide new insights into nematode adaptation to parasitize plants, and open the way for understanding parasitism genes and discovering new antiparasitic strategies.

You can find here a non-exhaustive list of plant parasitic nematode effectors related publications.