Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Home page

Encyclop'APHID

Chemical control

The products made by chemical synthesis have proved to be highly efficient for controlling aphid populations. However, a strategy based on excessive deployment of these agents has shown its limits and is contested for its consequences for human health and the environment.

Synthetic compounds

The first nicotine-based insecticides, derived from the natural compound, date from the 1920s. The development of the chemical industry saw the creation of numerous insecticide products. The supply of these agents rapidly increased, with the marketing of organochlorines in the 1960s, organophosphates, carbamates and then synthetic pyrethrinoids in the early 1980s and the neonicotinoids in the late 1990s. The latter are currently by far the most commonly used against aphids, by direct spraying on the plants for pyrethrinoids and by both spraying and seed treatment for neonicotinoids. 

Over the course of this period, the recommended dosage has steadily decreased, as have the toxicity of the active ingredients (AI): between 1970 and 2000, the recommended doses of AA per hectare were cut by 10 on average. At the same time, products have become more selective, more respectful of the auxiliary fauna of the enemies of aphids, but still to a highly unsatisfactory extent. They have also become rapidly degradables after use, thereby reducing the quantities of residues detectable in the food chain. Chemical control has in fact favoured selection of clones of a range of aphid species mostly resistant to the great majority of insecticide familles.

Current regulations limit the number of chemical substances and their use

They are substances powerfully toxic for both the central and peripheral nervous systems. Their neurotoxicity explains at once their efficacy on insects and their toxic effects in humans. Recent regulatory changes have brought about the withdrawal of many of the active agents, notably organophosphates and carbamates. Currently, the pyrethrinoids are the insecticides most often called on for manufacturing products for agricultural use because they have a better effectiveness/toxicity ratio. New substances such as fipronil and imidaclopride, although potentially advantageous from the operator-safety point of view, have been the subject of considerable application restrictions owing to their supposed deleterious effects on bee populations.

Mode of action

Insecticides can work by contact, or after absorption of the sap (systemic products). Other, agents are available that work through an intermediate process, by translaminar activity (penetrating plant tissue).
Oils extracted from petroleum act by asphyxia and are used in orchards and nurseries as winter treatments to destroy the eggs of aphids. Restricting outbreaks of aphids can be done with the aid of systemic agents, which show various advantages.
· The aphids feeding on sap will be poisoned
· The insecticide can be employed for treating the seed: it diffuses through the plant during germination..
· Natural enemies will not be poisoned but they could suffer from a scarcity of prey.
Seed applications are permitted for control of aphid vectors of viruses of annual crops (wheat, barley, beet). However, they have the great drawback that treatments inevitably have as systematic options, seeing that there is no way of predicting the forthcoming risks of attack at the moment of sowing the treated seeds

At the current stage of techniques available, chemical control must be used with discretion to limit its undesirable effects.

.