Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

Encyclop'Aphid : l'encyclopédie des pucerons

Encyclop'APHID

Entomophthorales

The Entomophthorales are fungi with non-cellular mycelium, currently categorized in the class Zygomycetes. However, the exact taxonomic position of some families is uncertain and can vary depending on the authors. They bring together six families, three of which,  Ancylistaceae, Entomophthoraceae and Neozygitaceae mainly contain species pathogenic for insects, 223 in all including 26 that attack aphids. In France a dozen species are frequently encountered on aphids, whereas the others are rare or absent.

Sitobion fragariae : colonie mycosée
Capitophorus horni : adultes aptères mycosés
Hyperomyzus lampsanae : adulte ailé mycosé
Erynia neoaphidis sur Sitobion avenae

The pathogen's development cycle in its host is just about the same, whatever the species considered:

  • The mycelium (hyphal body) in dead bodies of insects killed by an entomophthoral sporule when the ambiant relative humidity comes close to 95% for several hours (often at the end of the night): conidiophores (mycelium filaments) develop on the outside of the dead insect, carrying on their end a conidium, a propagule of asexual reproduction that disseminates the pathogen among the host population. In some species, the conidium is multinucleate, which makes it a sporeless sporangium. Depending on the species, the conidia measure between 15 and 50mm.
  • As the conidium matures, it establishes an osmotic differential pressure between the conidiophore and the conidium, so the latter is violently ejected several millimetres, even more than 1cm, away from its original position. In some species, the primary conidium forms a secondary one which is the real infectious form.
  • When this conidium touches a living aphid and if by chance the ambient relative humidity stays between 90 and 100%, it sprouts, then develops a germinative filament which penetrates the aphid’s cuticle then propagates, first as protoplasts in certain species, then short mycelium filaments lined with walls, forming the hyphal bodies. At the same time the fungi continue to proliferate inside most of the insect’s tissues, beginning with the fat bodies. After about 60 hours at 20°C, the majority of the tissues have been “digested.” All that remains are the embryos, some of which can be expelled, and then the aphid dies after 4 days on average at 20°C.
  • The cycle starts again, with the dead aphid body sporulating. First to be contaminated is its own offspring which is generally found huddled around it.

In many species, the infection cycle can be interrupted by resilient spores, formed in the aphid’s body from the hyphal bodies, which in this case produce no or very few conidia. These durable spores are strongly dehydrated and enclosed within a thick protective wall. These features are adaptations giving resistance, factors for preserving the inoculum in the ground. They are formed either by encystment of a mycelium filament (azygospores) or, in other species like the Neozygites, by the combination of two filaments, in which case they are zygospores.

The Entomophthorales are one of the most important factors in regulation of aphid populations when conditions enabling them to be effective are met. Weather or climatic conditions are the most significant, because very high relative humidity is essential for these fungi to accomplish the two key stages of their life cycle: sporulation and infection. For this reason their activity is more regular and generalized in the oceanic regions, where relative humidity is high, not only at night time but continuing throughout the day when rain or drizzle arrives. They can also be strongly and regularly active in irrigated zones.

Biotic factors can also favour the spectacular effects of some epizootics caused by Entomophthorales, like the aggregation response of the aphid populations. The example always taken is the total destruction of colonies of black bean aphid, Aphis fabae, in the west of France, by two principal species of Entomophthorales, Pandora neoaphidis and Neozygites fresenii. These can intervene in the space of a few days, owing to the massive propagation of inoculum within the aphid colonies attached in a dense cluster of several tens of centimetres around the stems.