En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgroParisTech

MIA Paris

Maud Delattre

Maître de Conférence

tel : 01 44 08 17 47
Maud.Delattre@agroparistech.fr
UMR518 AgroParisTech/INRA
Département MMIP
AgroParisTech
16 rue Claude Bernard
75 231 Paris Cedex 05

Research Interests

  • Models: Mixed Models, Markov models and hidden Markov models, Stochastic Differential Equations, segmentation models
  • Mathematic statistics: Asymptotic properties of estimators, Model selection
  • Computational statistics: stochastic algorithms (SAEM algorithm, MCMC algorithms), dynamic programming
  • Applications: pharmacology, genomics, environment, epidemiology

Publications

-> ProdINRA

-> Hal

  1. Delattre, M., Genon-Catalot, V. and Larédo, C. (2018) Approximate maximum likelihood estimation for stochastic differential equations with random effects in the drift and the diffusion. Metrika 81 (8) p. 953-983 (link)
  2. Delattre, M., Genon-Catalot, V. and Larédo, C. (2017) Parametric inference for discrete observations of diffusion processes with mixed effects. Stochastic Processes and their Applications 128(6) p. 1929-1957 (link)
  3. Brault, V., Delattre, M., Lebarbier, E., Mary-Huard, T. and Lévy-Leduc, C. (2017)  Estimating the number of change-points in a two-dimensional segmentation model without penalization. Scandinavian Journal of Statistics 44(2) p. 563-580 (link) 
  4. Colin, P., Delattre, M., Mancini, P. and Micallef, S. (2017) An Escalation for Bivariate Binary Endpoints Controlling the Risk of Overtoxicity (EBE-CRO): Managing Efficacy and Toxicity in Early Oncology Clinical Trials. Journal of Biopharmaceutical Statistics (link)
  5. Delattre, M., Genon-Catalot, V. and Samson, A. (2016) Mixtures of stochastic differential equations with random effects: Application to data clustering. Journal of Statistical Planning and Inference 173 p. 109-124 (link)
  6. Colin, P., Micallef, S., Delattre, M., Mancini, P. and Parent, E. (2015) Towards using a full spectrum of early clinical trial data: a retrospective analysis to compare potential longitudinal categorical models for molecular targeted therapies in oncology. Statistics in Medicine 34(22) p. 2999-3016 (link)
  7. Delattre, M., Genon-Catalot, V. and Samson, A. (2015) Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient. ESAIM: Probability and Statistics 19 p. 671-688 (link)
  8. Lévy-Leduc, C., Delattre, M., Mary-Huard, T. and Robin, S. (2014) Two-dimensional segmentation for analyzing HiC data. Bioinformatics 30(17) p. 386-392 (link)
  9. Delattre, M., Lavielle, M. and Poursat, M.A. (2014) A note on BIC in mixed effects models. Electronic Journal of Statistics 8(1) p. 456-475 (link)
  10. Faure, M.C., Sulpice, J.C., Delattre, M., Lavielle, M., Prigent, M., Cuif, M.H., Melchior, C., Tschirhart, E., Nusse, O. and Dupré-Crochet, S. (2013) The recruitment of p47phox and Rac2G12V at the phagosome is transient and phosphatidylserine dependent. Biology of the Cell 105 p. 1-18
  11. Delattre, M. and Lavielle, M. (2013) Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Statistics and Its Interface 6(4) p. 519-532 (link)
  12. Delattre, M., Genon-Catalot, V. and Samson, A. (2013) Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects. Scandinavian Journal of Statistics 40(2) p. 322-343 (link)
  13. Delattre, M., Savic, R.M., Miller, R., Karlsson, M.O. and Lavielle, M. (2012) Analysis of exposure-response of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modelling methodology. Journal of Pharmacokinetics and Pharmacodynamics 39(3) p. 263-271 (link)
  14. Delattre, M. and Lavielle, M. (2012) Maximum Likelihood Estimation in Discrete Mixed Hidden Markov Models using the SAEM algorithm. Computational Statistics & Data Analysis 56(6) p. 2073-2085 (link)
  15. Delattre, M. (2010) Inference in Mixed Hidden Markov Models and Applications to Medical Studies. Journal de la Société Française de Statistique 151(1) p. 90-105 (link)

Preprints

  • Delattre, M. and Kuhn, E. (2017) Estimating Fisher Information Matrix in Latent Variable Models. Preprint INRA.
  • Delattre, M. and Poursat, M.A. (2017) BIC strategies for model choice in a population approach. (arXiv:1612.02405)

Technical Reports

  • Delattre, M., Lavielle, M. and Poursat, M.A. (2012) BIC selection procedures in mixed effects models. RR-7948, INRIA.

PhD Thesis

"Inférence statistique dans les modèles mixtes à dynamique Markovienne", defended the 4th of July 2012, under the supervision of Marc Lavielle, Paris-Sud Orsay (link to manuscrit)

Softwares

R package MsdeParEst dedicated to parameter estimation in stochastic differential equations with mixed effects

Teaching

Some course materials