Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu INRA Logo ENDURE

QuantiPest

Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging

Reliable, precise and accurate estimates of disease severity are important for predicting yield loss, monitoring and forecasting epidemics, for assessing crop germplasm for disease resistance, and for understanding fundamental biological processes including co-evolution.

Disease assessments that are inaccurate and/or imprecise might lead to faulty conclusions being drawn from the data, which in turn can lead to incorrect actions being taken in disease management decisions. Plant disease can be quantified in several different ways. This review considers plant disease severity assessment at the scale of individual plant parts or plants, and describes our current understanding of the sources and causes of assessment error, a better understanding of which is required before improvements can be targeted. The review also considers how these can be identified using various statistical tools. Indeed, great strides have been made in the last thirty years in identifying the sources of assessment error inherent to visual rating, and this review highlights ways that assessment errors can be reducedparticularly by training raters or using assessment aids. Lesion number in relation to area infected is known to influence accuracy and precision of visual estimatesthe greater the number of lesions for a given area infected results in more overestimation. Furthermore, there is a widespread tendency to overestimate disease severity at low severities (10%). Both interrater and intrarater reliability can be variable, particularly if training or rating aids are not used. During the last eighty years acceptable accuracy and precision of visual disease assessments have often been achieved using disease scales, particularly because of the time they allegedly save, and the ease with which they can be learned, but recent work suggests there can be some disadvantages to their use. This review considers new technologies that offer opportunity to assess disease with greater objectivity (reliability, precision, and accuracy). One of these, visible light photography and digital image analysis has been increasingly used over the last thirty years, as software has become more sophisticated and user-friendly. Indeed, some studies have produced very accurate estimates of disease using image analysis. In contrast, hyperspectral imagery is relatively recent and has not been widely applied in plant pathology. Nonetheless, it offers interesting and potentially discerning opportunities to assess disease. As plant disease assessment becomes better understood, it is against the backdrop of concepts of reliability, precision and accuracy (and agreement) in plant pathology and measurement science. This review briefly describes these concepts in relation to plant disease assessment. Various advantages and disadvantages of the different approaches to disease assessment are described. For each assessment method some future research priorities are identified that would be of value in better understanding the theory of disease assessment, as it applies to improving and fully realizing the potential of image analysis and hyperspectral imagery.

Authors: Bock CH., Poole GH., Parker PE., Gottwald TR.

More information on this article on the Website Refdoc.fr HERE