Experimental data annotation guided by an ontology for decision support: @Web project

Patrice Buche
JRU IATE, Montpellier

Juliette Dibie
JRU MIA, Paris
L’équipe projet @Web en 2014

Conceptrices-développeuses

Permanents:
Patrice Buche IR HDR, INRA IATE
Brigitte Charnomordic, INRA MISTEA
Stéphane Dervaux, IE INRA MIA
Sébastien Destercke, CR CNRS HEUDYASIC
Juliette Dibie, PR AgroParisTech MIA
Liliana Ibanescu, MC AgroParisTech MIA
Luc Menut AI, INRA IATE
Michard Rakotosone, IR, INRA Plateforme CEPIA
Mathieu Roche, CR CIRAD TETIS

Non permanents:
Lilia Berrahou, Doct. UM2 IATE-LIRMM
Mathilde Salthun-Lasalle, IE INRA IATE-MIA
Rim Touhami, Doct. INRA IATE-MIA

Utilisateurs

Permanents:
Cédric Baudrit, CR INRA I2M
Abdellatif Barrakhat, CR INRA IATE
Jean-Pierre Belaud, MC ENSIACET LGC
Valérie Guillard, MC UM2 IATE
Xavier Rouau, DR INRA IATE
Caroline Sablayrolle, MC ENSIACET LCA

Non permanents:
Filippo Acerbi, Doct UM2 IATE
Fabien Bibi, Doct UM2 IATE
Guillaume Busset, Post-doc ENSIACET LCA
Charlotte Loustau Cazalet, Doct. INRA IATE
Mia Kurek, Post-doc UM2 IATE
Anaïs Licari, Master INRA IATE
Ali Motedayen, Doct., UM2 IATE
Célia Mousties, Master UM2 IATE
Caroline Wolf, Doct UM2 IATE
Heterogeneous data reuse for decision support

(Destercke et al. 2011, Buche et al 2013, Destercke et al. 2013, Tamani et al. 2014, Guillard et al. 2015)
I want a packaging which preserves my product, made of renewable resources, but without GMO, if possible transparent and with a « material » cost < 3 € / kg …
Multi-criteria querying

- Fresh produce database
- Virtual MAP simulation
- Stakeholder preferences and needs
- Multi-criteria flexible querying
- Packaging database

- Ranked list of most relevant packagings
- Industrial constraints
- Consumer preferences
- Waste management policy
- etc
Life cycle analysis (LCA) permits to estimate environmental impacts using a complete inventory of matter flow, energy, and effluents generated by the production process.
Pre-treatment eco-design

Biomass

Pre-milling

1. Physico-chemical treatments
2. Ultrafin milling
3. Physico-chemical treatments
4. Ultrafin milling
5. Physico-chemical treatments
6. Physico-chemical treatments

Washing and filtration
Extrusion

Ultrafin milling

Enzymatic hydrolysis

Xylose
Glucose
Pre-treatment comparison for rice straw
Heterogeneous data capitalisation guided by an ontology

Table 1: Permeabilities of MFC films and literature values for films of synthetic polymers and cellophane

<table>
<thead>
<tr>
<th>Sample</th>
<th>Grammage (g/m²)</th>
<th>Thickness (μm)</th>
<th>Air permeability (nm/Pa s)</th>
<th>Oxygen permeability in the material (ml m⁻² day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFC film A</td>
<td>17 ±1</td>
<td>21 ±1</td>
<td>13 ± 2</td>
<td>17.0, 18.5</td>
</tr>
<tr>
<td>EVOH</td>
<td>_</td>
<td>25</td>
<td>_</td>
<td>3–5</td>
</tr>
<tr>
<td>Cellophane</td>
<td>_</td>
<td>21</td>
<td>_</td>
<td>3</td>
</tr>
</tbody>
</table>

Symbolic concept: Ethylene Vinyl Alcohol
Symbolic concept: Packaging
Quantity: Thickness
Quantity: O₂ Permeability

O₂ Permeability Relation
Data capitalisation guided by an ontology

Web open data access

EcoBioCap DSS

RDB

Web

PDF

Rech document (WOS, ...)

Reliability assessment

Table and text extraction

Semantic annotation

Ontology

RDF DB
Termino-ontological resource

Conceptual component (OWL)

- OTR_Concept
- T_Concept
- Relation
- Argument
- Dimension
- Unit_Concept
- Quantity
- Symbolic_Concept
- Packaging
- Temperature
- Thickness

Terminological component (SKOS)

- Ethylene_Vinyl_Alcohol
- skos:prefLabel: ‘Ethylene vinyl alcohol’@en
- skos:altLabel: ‘EVOH’@en

Punning

Skos concept

(Touhami et al. 2011, Buche et al. 2013c)
A relation concept guarantees the data reusability.

- **O2Permeability**
 - hasPackaging
 - hasO2Permeability
 - hasThickness
 - hasTemperature
 - hasDiffPartialPressure
 - hasRelativeHumidity

- **Packaging**

- **Thickenss**

- **Temperature**

- **Diff_Partial_Pressure**

- **Relative_Humidity**
A relation concept models a unit operation

Core ontology facilitates software component reuse

Output flow
- Milling solid qty output
 - hasOutput

Input flow
- Biomass
 - hasInput
- Biomass quantity
 - hasInput
- Total pretreatment energy
 - hasInput

Control parameters
- Wet disk milling
 - hasInput
- Treatment duration
 - hasInput
- Milling rotation speed
 - hasInput

Relation
- hasInput
Supprimer le lien d'héridarchie entre le concept générique Quantity et le concept partial_pressure.

- Supprimer les liens avec les propriétés ayant partial_pressure comme domaine.

- Supprimer les liens avec les propriétés ayant partial_pressure comme co-domaine.

- Supprimer la terminologie associée à partial_pressure.

Exemple : Supprimer la quantité partial_pressure :
Proposition: Notion de kit de changement

Thèse Rim Touhami Sept 2014
Data capitalisation guided by an ontology

Web

<html>

PDF

Rech document (WOS, …)

Reliability assessment

Table and text extraction

Semantic annotation

Ontology

EcoBioCap DSS

RDB

Web open data access

RDF DB
2 categories of meta data:

- Nature et source reputation
 - Publication date
 - Times cited (WOS)
 - Source type

- Experimentation management
 - Repetition number
Reliability expert quotation

<table>
<thead>
<tr>
<th>repetition</th>
<th>unknown</th>
<th>not at all reliable</th>
<th>not at all or hardly</th>
<th>hardly reliable</th>
<th>hardly or average</th>
<th>average reliable</th>
<th>average or reliable</th>
<th>reliable</th>
<th>reliable very</th>
<th>very reliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>number of repetitions</th>
<th>unknown</th>
<th>not at all reliable</th>
<th>not at all or hardly</th>
<th>hardly reliable</th>
<th>hardly or average</th>
<th>average reliable</th>
<th>average or reliable</th>
<th>reliable</th>
<th>reliable very</th>
<th>very reliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>no repetition</td>
<td></td>
</tr>
<tr>
<td>once</td>
<td></td>
</tr>
<tr>
<td>twice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>3 times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>more than 3 times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>age and citation number</th>
<th>unknown</th>
<th>not at all reliable</th>
<th>not at all or hardly</th>
<th>hardly reliable</th>
<th>hardly or average</th>
<th>average reliable</th>
<th>average or reliable</th>
<th>reliable</th>
<th>reliable very</th>
<th>very reliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>between 3 and 8 years old & less than 10 citations</td>
<td></td>
</tr>
<tr>
<td>between 3 and 8 years old & between 10 and 20 citations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[-,+]</td>
</tr>
<tr>
<td>between 3 and 8 years old & between 20 and 40 citations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[-,+]</td>
</tr>
</tbody>
</table>

@Web graphical user interface
Reliability computation

@Web graphical user interface

Citation Number: more than 40
Age: more than 8 years old

Criterion age and top citation
Age: more than 8 years old
Top Citation: top 0.10%

Criterion source type
Source Type: journal article

Reliability evaluation's document information

Reliability results
Low expectation: 4.94; High expectation: 5.0
Known criteria values rate: 80%

Last evaluation date: 2014-09-29
Reliability results

<table>
<thead>
<tr>
<th>Classes</th>
<th>Number of publications</th>
<th>Reliability Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very reliable</td>
<td>14</td>
<td>[4.97 ; 5]</td>
</tr>
<tr>
<td>Reliable</td>
<td>3</td>
<td>[3.2 ; 4.85]</td>
</tr>
<tr>
<td>In conflict</td>
<td>9</td>
<td>[1.01 ; 4.93]</td>
</tr>
<tr>
<td>Not at all reliable</td>
<td>4</td>
<td>[1.02 ; 1.33]</td>
</tr>
</tbody>
</table>

- **Very reliable**: peer-reviewed articles, with repetitions, high reputation
- **Reliable**: peer-reviewed articles, with repetitions, medium reputation
- **In conflict**: peer-reviewed articles but no repetition
- **Not at all reliable**: technical sheets without external review and no repetition
Data capitalisation guided by an ontology

EcoBioCap DSS

Web open data access

RDB

Ontology

Semantic annotation

RDF DB

Reliability assessment

Table and text extraction

Web

<html>

PDF

Rech document (WOS, …)
The oxygen permeability was measured according to the ASTM standard D3985-23 (6% RH on the top side, 50% RH on the bottom side). The MFC films were mounted in a cell where 100% O₂ was flushed on the top side and 100% N₂ on the bottom side. The amount of O₂ transferred through the films was assessed by a Mocon Coulux oxygen sensor in the N₂ gas flow. Two replicates were measured for each sample.

Results and Discussion

Parameterization

To perform the program, the parameters involved in equations must be estimated.

The permeability of the LDPE film was estimated independently by cell permeability method. At 100% relative humidity and 25 °C, O₂ and CO₂ permeability were respectively 1878.1 and 0.134 amol x m⁻¹ x s⁻¹ x Pa⁻¹. These values did not change significantly when the relative humidity decreased data but showed and were in close agreement with the literature data for the same material (Pauze 1988).

To design an oxygen transfer equation, typical experimental data for AECP® L1140 compared with time are presented in Figure 1. The following absorption kinetic model was fitted to the experimental data and was a typical saturation exponential curve. The following mathematical model was thus developed to express the number of oxygen molecules absorbed (Nₒ₂) compared with time:

Materials and Methods

Tomatoes (Garnet) were supplied by the Centre technique interprofessionnel des fruits et légumes (CTIFL) of Saint-Herblain (France). The laboratory was able to perform PAM on tomato leaves harvested. After harvesting, they were collected from local producers in Nantes, France. They were kept at 20 °C under ambient air for 12 h before the experiment began.

Low density polyethylene film of 50 µm thickness was used (LDPE, BPI Emballage, Harrin Pack, le Bois de Vodin, France).

Oxygen absorbers, type AESCP® LI4106, were supplied by Sun-

Quantitative data

{(LDPE, Packaging: {Low Density Polyethylene}),
(50 µm, Thickness: (value: 50, unit concept: Micrometer)),
(1078 amol x m⁻¹ x s⁻¹ x Pa⁻¹, O₂Permeability : (value: 1078, unit concept: Attomole per meter per second per pascal))

Localisation of relevant information (packaging characteristics)
Reduction of the search space in the text and enrichment of the termino-ontological resource by adding units of measure

Motivation

Automatic extraction from the text of quantitative data

- Water Vapor Permeability (WVP) of 1.81×10^{-9} g m$^{-1}$ s$^{-1}$ Pa$^{-1}$
- O[2] permeability increasing from 7.12 to 7.68×10^{-15} g·(Pa s m)$^{-1}$

Scientific locks

- Locate relevant information in the text
- Identify and extract units of measure taking into account their specific syntactical rules
Data capitalisation guided by an ontology

Web

EcoBioCap DSS

Rech document (WOS, …)

Reliability assessment

Table and text extraction

Semantic annotation

Ontology

RDF DB

RDB

Web open data access
@Web graphical user interface
Data table annotation (pack example)

@Web graphical user interface
Manual Annotation of Comparison of sugar yields, crystallinity, and energy consumption between three pretreatments in various...

Original table

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sugar yields (%)</th>
<th>Crf (%)</th>
<th>Energy consumption (MJ/kg rice straw)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xyl</td>
<td>Ara</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>23.4±2.3</td>
<td>18.7±2.7</td>
<td>20.7±1.4</td>
</tr>
<tr>
<td>CM</td>
<td>52.2±3.5</td>
<td>16.5±0.4</td>
<td>28.4±1.0</td>
</tr>
<tr>
<td>DBM₅₅₅₅₅</td>
<td>66.0±0.5</td>
<td>28.0±0.3</td>
<td>34.3±0.4</td>
</tr>
<tr>
<td>DBM₉₀₉₀₉₀</td>
<td>75.9±0.5</td>
<td>38.3±0.2</td>
<td>40.5±0.4</td>
</tr>
<tr>
<td>DBM₆₀₆₀₆₀</td>
<td>80.4±2.0</td>
<td>54.3±1.3</td>
<td>48.9±1.0</td>
</tr>
<tr>
<td>HCWT</td>
<td>70.3±3.3</td>
<td>88.6±4.4</td>
<td>54.7±3.4</td>
</tr>
</tbody>
</table>

Annotated table

<table>
<thead>
<tr>
<th>n°</th>
<th>Output solid constituent size Unit : mm</th>
<th>Treatment</th>
<th>Experience number Unit : 1</th>
<th>Process step number Unit : 1</th>
<th>Biomass</th>
<th>Biomass quantity Unit : g</th>
<th>Total pretreatment energy Unit : MJ/kg</th>
<th>Water quantity Unit : ml</th>
<th>Milling rotation speed Unit : min</th>
<th>Treatment duration Unit : min</th>
<th>Output solid constituent quantity Unit : g</th>
<th>Temperature Unit : °C</th>
<th>Output liquid constituent quantity Unit :</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.000e+0</td>
<td>Cutting milling</td>
<td>1.000e+0</td>
<td>1.000e+0</td>
<td>Rice straw</td>
<td>3.000e+1</td>
<td>[-inf ; inf]</td>
<td>0.000e+0</td>
<td>[-inf ; inf]</td>
<td>[-inf ; inf]</td>
<td>6.000e+1</td>
<td>3.000e+1</td>
<td>3.000e+1</td>
</tr>
<tr>
<td>2</td>
<td>Drying</td>
<td></td>
<td>1.000e+0</td>
<td>2.000e+0</td>
<td>Rice straw</td>
<td>3.000e+1</td>
<td>[-inf ; inf]</td>
<td>3.000e+1</td>
<td>6.000e+1</td>
<td>3.000e+1</td>
</tr>
<tr>
<td>3</td>
<td>Hot water treatment</td>
<td></td>
<td>3.000e+0</td>
<td>3.000e+0</td>
<td>Rice straw</td>
<td>3.000e+1</td>
<td>5.700e+0</td>
<td>3.000e+2</td>
<td>3.000e+1</td>
<td>4.320e+3</td>
<td>3.020e-2 ; 4.670e-2</td>
<td>4.500e+1</td>
<td>3.000e+1</td>
</tr>
<tr>
<td>4</td>
<td>Enzymatic hydrolysis treatment</td>
<td></td>
<td>3.000e+0</td>
<td>1.000e+0</td>
<td>Rice straw</td>
<td>[4.000e-2 ; 6.000e-2]</td>
<td>[-inf ; inf]</td>
<td>0.000e+0</td>
<td>[-inf ; inf]</td>
<td>3.000e+1</td>
</tr>
<tr>
<td>5</td>
<td>Cutting milling</td>
<td></td>
<td>2.000e+0</td>
<td>1.000e+0</td>
<td>Rice straw</td>
<td>3.000e+1</td>
<td>[-inf ; inf]</td>
<td>0.000e+0</td>
<td>[-inf ; inf]</td>
<td>3.000e+1</td>
</tr>
</tbody>
</table>
Data capitalisation guided by an ontology

Web open data access

EcoBioCap DSS

Ontology

Web

PDF

Rech document (WOS, …)

Reliability assessment

Table and text extraction

Semantic annotation

RDB

RDF DB
Annotated data table access using permalink

CO2 permeability (export)

<table>
<thead>
<tr>
<th>n°</th>
<th>CO2 Permeability Unit : kg.m⁻².s⁻¹.pa⁻¹</th>
<th>Partial pressure difference Unit : atm</th>
<th>Packaging</th>
<th>Relative_Humidity Unit : %</th>
<th>Temperature Unit : °C</th>
<th>Thickness Unit : μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[2.720e+17 ; 2.820e+17]</td>
<td>-inf ; inf</td>
<td>poly(98% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>2.500e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>2</td>
<td>[1.930e+17 ; 2.050e+17]</td>
<td>-inf ; inf</td>
<td>poly(94% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>2.500e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>3</td>
<td>[3.070e+17 ; 3.170e+17]</td>
<td>-inf ; inf</td>
<td>poly(98% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>3.000e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>4</td>
<td>[2.230e+17 ; 2.350e+17]</td>
<td>-inf ; inf</td>
<td>poly(94% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>3.000e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>5</td>
<td>[3.360e+17 ; 3.480e+17]</td>
<td>-inf ; inf</td>
<td>poly(98% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>3.500e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>6</td>
<td>[2.460e+17 ; 2.580e+17]</td>
<td>-inf ; inf</td>
<td>poly(94% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>3.500e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>7</td>
<td>[3.720e+17 ; 3.840e+17]</td>
<td>-inf ; inf</td>
<td>poly(98% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>4.000e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>8</td>
<td>[2.830e+17 ; 2.910e+17]</td>
<td>-inf ; inf</td>
<td>poly(94% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>4.000e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>9</td>
<td>[4.030e+17 ; 4.330e+17]</td>
<td>-inf ; inf</td>
<td>poly(98% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>4.500e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
<tr>
<td>10</td>
<td>[3.290e+17 ; 3.410e+17]</td>
<td>-inf ; inf</td>
<td>poly(94% L-lactide)/Polylactic Acid</td>
<td>0.000e+0</td>
<td>4.500e+1</td>
<td>[0.000e+0 ; inf]</td>
</tr>
</tbody>
</table>
SPARQL querying of the RDF base

Query Summary

<table>
<thead>
<tr>
<th>Query scope</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology</td>
<td>IC2ACV</td>
</tr>
<tr>
<td>Relation</td>
<td>Biomass glucose composition relation</td>
</tr>
</tbody>
</table>

Value domains wanted for attributes

- **Mandatory**
 1. Biomass: [Grasses and energetic plants: 1]

- **Desirable**
 1. Glucose rate: [0; 100; 100; 100] - unit: Percent

Parameters

(default parameters)

@Web graphical user interface
<table>
<thead>
<tr>
<th>rank</th>
<th>reliability score</th>
<th>Biomass</th>
<th>Glucose rate</th>
<th>Biomass state</th>
<th>Experience number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>[Grasses and energetic plants]</td>
<td>[5.33e+01, 5.60e+01] %</td>
<td>Untreated biomass</td>
<td>[2.00e+00] 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>[Bagasse]</td>
<td>[4.66e+01] %</td>
<td>Untreated biomass</td>
<td>[3.00e+00] 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>[Rice straw]</td>
<td>[4.63e+01] %</td>
<td>Untreated biomass</td>
<td>[1.00e+00] 1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>[Rice straw]</td>
<td>[4.63e+01] %</td>
<td>Untreated biomass</td>
<td>[0.00e+00] 1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>[Rice straw]</td>
<td>[4.52e+01] %</td>
<td>Untreated biomass</td>
<td>[5.00e+00] 1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>[Rice straw]</td>
<td>[4.64e+01] %</td>
<td>Untreated biomass</td>
<td>[1.00e+00] 1</td>
</tr>
</tbody>
</table>

@Web graphical user interface
Conclusion

• A generic and reusable ontological model to capitalize experimental data

• Ontology consistency management

• Data reliability assessment

• Manual annotation guided by the ontology using text-mining assistant

• Flexible querying of annotated data combining 3 kinds of reasoning (specialization, fuzzy pattern matching, reliability satisfaction)
Future works

• CSV data file import

• RDF DB consistency management in case of ontology evolution

• Ontology mapping for Linked Open Data

• Assistant development to facilitate the manual annotation work
 – Text mining approach
 – Guidelines formalization using rules (OBDA approach)

• Extending core ontology to represent semantic links between n-ary relation concepts (temporal links, …)
Mapping to DOLCE upper ontology

- Chemical reagent
- Biomass
- Quantity
- Treatment
- Treatment expe
- Biomass characterization
Which varieties of grapes having a “high” rate of tannin extraction from marc (vinification co-product) and “good” wine color parameters?
Modeling Guidelines associated with processes as rules

- Topic Bioref-PM, This Topic must contain experiences with only one milling followed by the enzymatic hydrolysis. It does not include a physico-chemical step but it can include a washing and separation step. (en)
- Topic Bioref-PM-PC-EX-PS, This Topic must contain experiences composed of a pre-milling step, then a physico-chemical treatment and an extrusion treatment and finally a press and separation step (washing and filtration) followed by the enzymatic hydrolysis step. (en)
- Topic Bioref-PM-PC-PS, This Topic must contain experiences composed of a least one pre-milling step, then a physico-chemical treatment and a washing and filtration step (washing and separation) and finally the enzymatic hydrolysis step. (en)
- Topic Bioref-PM-PC-UFM, This Topic must contain experiences composed of a pre-milling step, then a physico-chemical treatment followed by an ultrafine milling step (ball milling…) and finally the enzymatic hydrolysis step. This topic doesn’t require a step of press and separation because it’s a process with a low intake of effluent. The second milling step must give an “Output solid constituent size” smaller than 1 mm. (en)
- Topic Bioref-PM-PC-UFM-PS, This Topic must contain experiences composed of a pre-milling step, then a physico-chemical treatment followed by an ultrafine milling step (wet milling…) and a press and separation step (washing and filtration) and finally the enzymatic hydrolysis step. This topic requires a press and separation step because there are a lot of effluents in the physico-chemical step or because the milling is made with effluent. The second milling step must give an “Output solid constituent size” smaller than 1 mm. (en)
La gestion de l'évolution

Implémentation

Rim Touhami
La gestion de l'évolution

Implémentation

Rim Touhami

Evolution strategies

How to deal orphan concepts?

Orphan concepts are:
- deleted
- reconnected to their parents
- reconnected to the root concept

How to deal orphan properties?

Orphan properties are:
- deleted
- reconnected to their parents
- left alone

How to deal restrictions with undefined class in their definition?

Restrictions are:
- deleted
- updated: replace the class representing the restricted range with its subclasses
- updated: replace the class representing the restricted range with one or more subclasses selected by the user

How to deal restrictions with undefined property in their definition?

Restrictions are:
- deleted
- updated: replace the property used in the restricted range with one property selected by the user

How to deal instances whose concept is deleted?

Instances are:
- deleted
- reconnected to the parents

How to deal instances whose property is deleted?

Instances are:
- deleted
- defined for the parent properties

How to deal properties with undefined class in their domain/range?

Undefined class is:
- deleted from the list of domains or co-domains
- replaced by its subclasses

How to deal labels whose concept is deleted?

Labels are:
- deleted
- reconnected to the subclasses of the deleted concept as alternative labels
- reconnected as alternative labels to one or more sub classes selected by the user
Querying the RDF base

Query Summary

<table>
<thead>
<tr>
<th>Query scope</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology</td>
<td>MAP0PT</td>
</tr>
<tr>
<td>Topics</td>
<td>"PackPermeability"</td>
</tr>
<tr>
<td>Relation</td>
<td>O2 Permeability relation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value domains wanted for attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
</tr>
<tr>
<td>(1) O2 Permeability: [5e-13; 1.27e-11; 1.5e-11; 1e-10] - unit: Mole per Meter per second per pascal</td>
</tr>
</tbody>
</table>

@Web graphical user interface
Query Results

<table>
<thead>
<tr>
<th>rank</th>
<th>reliability score</th>
<th>O2 Permeability</th>
<th>Temperature</th>
<th>Thickness</th>
<th>Relative Humidity</th>
<th>Packaging</th>
<th>Partial pressure difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.950e+01:3.150e+01 cm³ mm⁻¹ m⁻² day⁻¹ atm⁻¹</td>
<td>2.400e+01:2.600e+01 °C</td>
<td>2.000e+02:2.200e+02 μm</td>
<td>[inf, +inf] %</td>
<td>Polyactic acid</td>
<td>1.000e+00 atm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.290e+01:2.490e+01 cm³ mm⁻¹ m⁻² day⁻¹ atm⁻¹</td>
<td>2.400e+01:2.600e+01 °C</td>
<td>2.000e+02:2.200e+02 μm</td>
<td>[inf, +inf] %</td>
<td>(1wt%)Ag/Polyactic Acid</td>
<td>1.000e+00 atm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.680e+01:1.880e+01 cm³ mm⁻¹ m⁻² day⁻¹ atm⁻¹</td>
<td>2.400e+01:2.600e+01 °C</td>
<td>2.000e+02:2.200e+02 μm</td>
<td>[inf, +inf] %</td>
<td>(5wt%)Cellulose nanocrystals/(1wt%)Ag/Polyactic Acid</td>
<td>1.000e+00 atm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7.000e+01:8.300e+01 cm³ mm⁻¹ m⁻² day⁻¹ atm⁻¹</td>
<td>2.300e+01 °C</td>
<td>8.500e+01 μm</td>
<td>0.000e+00 %</td>
<td>Chitosan/paper</td>
<td>1.000e+00 atm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.150e+01:1.350e+01 cm³ mm⁻¹ m⁻² day⁻¹ atm⁻¹</td>
<td>2.400e+01:2.600e+01 °C</td>
<td>2.000e+02:2.200e+02 μm</td>
<td>[inf, +inf] %</td>
<td>(6wt%)Modified cellulose nanocrystals/(1wt%)Ag/Polyactic Acid</td>
<td>1.000e+00 atm</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.320e+01:1.520e+01 cm³ mm⁻¹ m⁻² day⁻¹ atm⁻¹</td>
<td>2.400e+01:2.600e+01 °C</td>
<td>2.000e+02:2.200e+02 μm</td>
<td>[inf, +inf] %</td>
<td>(1wt%)Modified cellulose nanocrystals/(1wt%)Ag/Polyactic Acid</td>
<td>1.000e+00 atm</td>
</tr>
</tbody>
</table>
Learning corpus

- **Biorefinery Corpus**
- **Learning on Packaging corpus**

Model

- **Set of descriptors**
- **New similarity measure SM_DB**
- **Iterative enrichment of the ontology**

Sets:*

- Identification of new units of measure
- Reduction of the search space for unit of measure

Semi-automatic method
Data

- « Corpus Biorefinery »
 - 243 scientific documents
 - Unit terms extracted from the ontology: 36 terms

- « Corpus Packaging »
 - 115 scientific documents
 - Unit terms extracted from the ontology: 211 terms

Locate relevant information by learning

- Reduction of « Corpus Biorefinery »
 - 90 %

- Reduction of « Corpus Packaging »
 - 86 %

Enrichment of the termino-ontological resource

- Enrichment « OTR Bioraffinerie »
 - + than 100 % of new units

- Enrichment « OTR Packaging »
 - 18 % of new units