By browsing our site you accept the installation and use cookies on your computer. Know more

Menu INRA Logo institutions

SPS - Saclay Plant Sciences

Julien Chiquet

Researcher, INRA

Julien Chiquet
Inference of Biological network from omics data

Main research interests


  • Sparse models and regularization
  • Gaussian Graphical models
  • Convex approaches


  • Biological network inference
  • Genomic selection
  • Metagenomics

Selection of 3 major recent publications

Chiquet J, Gutierrez P, Rigaill G: Fast tree inference with weighted fusion penalties Journal of Computational and Graphical Statistics , to appear

Picchetti T, Chiquet J, Elati M, Neuvial P, Nicolle R, Birmelé E: A model for gene deregulation detection using expression data BMC Systems Biology , 2015

Chaloub B, Denoeud F, Liu S, Parkin S, Tang H, X. W, Chiquet J, 76 more, et al.: Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome Science: 950–953, 2014 


Julien Chiquet is a researcher at the French National Institute for Agronomic Research (INRA) in the department of Applied Mathematics and Computer Science.  After a MSc. In Computer Science, he received in 2007 his PhD in applied mathematics at the University of Technologies of Compiègne (UTC), which was supported by the French Nuclear Agency (CEA). His PhD dealt with the development of stochastic approaches for application to reliability problems. In 2008 he got a position as an assistant professor in Statistics at the Université d’Évry-Val-d’Essonne. There, he turned to statistical learning, motivated by the need for renewed statistical methods and algorithms for analyzing genomics data. He has been working ever since on the problem of biological network reconstruction and modeling among other challenging problems in genomics. His favorite tools entails Gaussian graphical model and sparse regularizing methods. He received his “habilitation” in mathmatics at the Université  of Évry in 2015. In 2016, he joined the INRA as a researcher at AgroParisTech, where he diversifies his fields of application to genetics and agronomy by elaborating more involved regularized methods to a broader class of problems.


UMR 518 AgroParisTech / INRA 
16, rue Claude Bernard 
75231 Paris CEDEX 05