Effect of repeated organic residue applications on soil microorganisms involved in N cycle and their activities at the plot scale: consequences on ecosystem services

Introduction

Use in agriculture of municipal or agricultural residues (Organic Waste Product, OWP):
- Addition of mineral and organic N in soil
- Impact on N cycle and associated ecosystem services (soil fertility, water quality, air quality, climate regulation)?

Material and Methods: the field experiment

QualiAgro (78, France)

Sampling, methods and measures

- Loamy soil on carbonated loesses
- Initial characteristics (1998): pH=6.9, organic N=1.1 g/kg, C/N=9.5
- Crop succession: wheat-corn (residuals exported for wheat, incorporated for corn)
- OWP application after wheat in September every 2 years; Doses equivalent to 41 ChA (10 à 20 ChA DM/ha)

Treatments:
- C: Control without OWP application
- CN: Control without OWP application enriched with N
- OWP: Municipal solid waste compost
- GWS: Co-compost of green waste and sewage sludge
- BIO: Bio-waste compost
- FUM: Farm yard manure

Table 1. Average characteristics of OWP applied on QualiAgro site between 1998 and 2011

<table>
<thead>
<tr>
<th>Units</th>
<th>MSW</th>
<th>GWS</th>
<th>BIO</th>
<th>FYM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td>%FM</td>
<td>69±12</td>
<td>63±8</td>
<td>70±8</td>
</tr>
<tr>
<td>Applied quantity</td>
<td>1 DM ha⁻¹</td>
<td>12±0.3</td>
<td>16.4±2.7</td>
<td>19.1±4.2</td>
</tr>
<tr>
<td>Organic Carbon</td>
<td>g kg⁻¹ DM</td>
<td>308±45</td>
<td>265±44</td>
<td>208±47</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>g kg⁻¹ DM</td>
<td>17.6±2.0</td>
<td>23.5±2.7</td>
<td>17.4±4.5</td>
</tr>
<tr>
<td>Mineral Nitrogen</td>
<td>g kg⁻¹ DM</td>
<td>0.4±0.2</td>
<td>2.6±0.9</td>
<td>0.5±0.3</td>
</tr>
<tr>
<td>Organic Nitrogen</td>
<td>g kg⁻¹ DM</td>
<td>17.2±1.9</td>
<td>20.9±2.5</td>
<td>16.9±4.2</td>
</tr>
<tr>
<td>Inoc²</td>
<td>%OM</td>
<td>48.8±13.1</td>
<td>77.6±8.7</td>
<td>75.5±6.3</td>
</tr>
</tbody>
</table>

²Lashermes et al. 2009.

Effect of OWP on denitrifying populations

- **Most efficient OWP = GWS and BIO** → potential substitution of mineral fertilizer.
- **Increased mineral N available compared to control (Kg N/ha) = increased mineral N at sampling + enhanced organic N mineralization from increased soil organic matter and from recently applied OWP.**

Effects of OWP on nitrifying bacterial populations (AOB) carrying amoA gene

- **Stimulation of nitrifying bacterial populations at short term in GWS plot probably because of the high initial proportion of NH₄⁺ in the GWS compost (Table 1).**

N₂O emissions

- **Very low fluxes of N₂O: 0.02 to 0.3 % of N applied after 72 days.**
- **MSW>BIO>GWS>FYM>CN.**

Perspectives

Measure of the potential NH₃ volatilization and estimation of nitrates leaching following OWP application to be able to make the environmental balance of this practice.

This work was granted by ADEME within ECO3OM SOWMANT project. The field experiment is carried out in partnership with Veolia Environment R&D.